
TAT-C ML: Machine Learning for
Enhanced Trade-Space Analysis

of Constellations
Daniel Selva (Texas A&M University)

PI: Jacqueline Le Moigne (GSFC)

Co-Is: P. Dabney, M. Holland, S. Hughes (GSFC); S. Nag (BAERI); A. Siddiqi, V.
Foreman (MIT); P. Grogan (Stevens)

2018 ESTF workshop

Session B1: Enabling Distributing Missions and Constellations

June 12, 2018

Outline

• Motivation for DSM

• Challenges in Pre-Phase A studies for DSM

• TAT-C (AIST14): Overview and limitations

• TAT-C ML (AIST16)

• Enhancing tradespace search with AI and ML
• Evolutionary algorithm
• Adaptive operator selection
• Knowledge-driven operators (offline)
• Online learning of operators through feature extraction

• Next steps

2

Distributed Satellite Missions (DSM) will play a
role in future Earth Observing Systems

3

Current Pre-Phase A tools are not well suited
for DSM
• Needs in Pre-phase A:

• Check feasibility of meeting requirements

• Evaluate a sufficient number of alternatives

• Conduct trade studies and what-if analyses

• Propagate satellite orbits with sufficient accuracy over long periods of time

• Calculate performance metrics (e.g., mean revisit time) and others (e.g., cost, risk)

• Challenges
• High number of vehicles to simulate

• Combinatorial explosion of alternatives

• Both of these significantly increase computational cost

• TAT-C (AIST14) was developed to address these challenges

4

Tradespace Analysis Tool for Constellations
(TAT-C, AIST14 project)
• Goal: To Provide a framework to

perform pre-Phase A mission
analysis of DSM

• Handle multiple spacecraft sharing
mission objectives

• Explore tradespace of variables for
pre-defined science, cost and risk
goals and metrics

• Optimize cost and performance
across multiple instruments and
platforms instead of one at a time

• Include sets from smallsats through
flagships

5

TAT-C Example of results: Sustainable Land
Imaging

6

TAT-C’s tradespace search capabilities are
limited
• Currently, TAT-C uses a brute-force

design of experiments approach for
searching the tradespace

• No optimization – just screening of the
tradespace

• Many unpromising architectures are
evaluated

• Cannot start seeing results until all
alternatives have been evaluated

7

TAT-C ML (AIST16 project)

• Increase the dimensionality and
modeling depth of TAT-C’s trade-
space analysis capabilities with:
• Various trajectories, orbital planes,

mission replanning, orbit and
Maneuver Modeling, etc.

• New modules (instrument, launch,
onboard computing, etc.)

• Optimize the Trade-Space Exploration
by Utilizing Machine Learning and a
Fully Functional Knowledge Base (KB)
to Efficiently Traverse a Large Trade-
Space

Results

Improved	GUI

DSM	Knowledge	Base

If	validation,	proceed	with	trade-space	analysis	and	

KB	provides	model	inputs	to	all	modules	

Repeated	or	

improper	search

Tradespace	Search	
Request	(TSR)	

Requirements

Validation

Cost	&	Risk	
(C&R)	Module

Extending	Risk	
Module,	including
Ground	Operations

Tradespace Search	Iterator	
(TSI)

Machine	Learning	Based	TSI,	
augmented	with Mission	Ops	&	

Replanning,	Comms and	
Instrument	Trades

Reduction	and	Metrics

Launch	
Module

Orbit	&	Coverage	
(O&C)	Module

Orbit	&	Maneuver

Instrument	
Module

Onboard	
Computing	
Module

Support	
Modules:	
respond	to	
requests	
from	TSI	
and	C&R

8

Enhancing tradespace search with AI and ML

• Speed up the search and avoid unnecessary expensive function evaluations

• Baseline search/optimization using a multi-objective evolutionary
algorithm (epsilon-MOEA). Example: min avg revisit time and min cost

• Maintain a pool of operators and use ML to figure out which ones work
best (~reinforcement learning)

• Pool may contain:
• Domain-independent operators: different kinds of Crossover, mutation, etc.
• Or Domain-specific!

• Domain-specific operators may be available before the search or
discovered online
• Use feature extraction techniques (association rule mining, mRMR)

9

Baseline evolutionary algorithm: ε-MOEA

• Evolutionary algorithms mimic
natural evolution

• Main operators:
• Selection
• Crossover
• Mutation

• Many types of crossover/mutation
exist, each with parameters to tune

• Epsilon-MOEA
• Steady-state algorithm
• Maintains an archive of best solutions

found so far

10

Generate offspring

Evaluate offspring and
insert into population

Increment Iteration
𝑡 ← 𝑡 + 1

Create and evaluate
initial population

START

END

Update population and
archive

terminate

continue

Check Termination
Criteria

Baseline evolutionary algorithm

Adaptive operator selection (AOS)

• Pool of operators; ML layer to learn which one(s) work
best

• Credit assignment: Measure performance of each
operator over time

• 𝑐𝑖,𝑡 = credit received by 𝑜𝑖 at iteration t
• Example: 𝑐𝑖,𝑡 ∝ 𝑓 𝒙𝑝 − 𝑓 𝒙𝑜𝑖,𝑡

• Operator selection: Assign solutions to operators
proportionally to their quality (𝑞𝑖,𝑡 = quality of operator
𝑜𝑖 at iteration t). For example:

𝑞𝑖,𝑡+1 = 1 − 𝛼 ⋅ 𝑞𝑖,𝑡 + 𝛼 ⋅ 𝑐𝑖,𝑡

𝑝𝑖,𝑡+1 = 𝑝𝑚𝑖𝑛 + 1 − 𝑂 ⋅ 𝑝𝑚𝑖𝑛 ⋅
𝑞𝑖,𝑡+1

σ
𝑗=1
|𝑂|

𝑞𝑗,𝑡+1

𝛼 ∈ 0,1 = adaptation rate

𝑝𝑚𝑖𝑛 = minimum selection probability

11
Probability matching operator selection

MOEA+AOS

AOS works with benchmark problems

• We measured performance of 9 different AOS approaches (new and existing) on 26
different benchmarking multi-objective problems (WFG, UF, DTLZ)

• AOS consistently outperform state-of-the-art EA over wide range of problems

• AOS discover the operator(s) that work better for each problem

12

Adding knowledge-driven operators

• Domain- and potentially problem-specific operators

• Expressed in first-order logic format

• Stored in knowledge base; can be reused

13

Using knowledge-driven operators is
challenging

• Rely on quality of knowledge

• Reasonable expert knowledge
may be useless for a particular
problem

• Reduction in diversity of
solutions

• Premature convergence

14

AOS enables using existing knowledge
(adaptive operators better than constraints)

O-AOS: Operators – Adaptive Operator Selection
C-DNF: Constraints – Disjunctive Normal Form
C-ACH: Constraints – Adaptive Constraint Handling
HV: hypervolume (performance metric in MOO, large-is-better)
NFE: Number of function evaluations
Thick lines: Statistically significantly higher median than ε-MOEA (Wilcoxon rank-sum, 𝑛 = 30, 𝑃 < 0.05)

15

On-line discovery of new operators

• New operators can be discovered
online using feature extraction

• Approach:
• Use association rule mining (a priori

algorithm) to search space of
conjunctions of features for target
region C (top 25% architectures)

• Use mRMR to select best 4 features

• Make operators from best features

• Add operators to pool

• Repeat every 1000 iterations

𝑠𝑢𝑝𝑝 𝐹 ≡
𝐹

𝑈

𝑐𝑜𝑛𝑓 𝐹 ⇒ 𝐶 =
𝑠𝑢𝑝𝑝 𝐹∩𝐶

𝑠𝑢𝑝𝑝 𝐹
(consistency, specificity)

𝑐𝑜𝑛𝑓 C ⇒ F =
𝑠𝑢𝑝𝑝 𝐹∩𝐶

𝑠𝑢𝑝𝑝 C
(coverage, generality)

mRMR: Φ𝑖 = Φ𝑖−1 ∪ max
𝐹𝑖∈Φ\Φ𝑖−1

𝐼 𝐹𝑖 , 𝐶 −
1

𝑖−1
σ𝐹𝑗∈Φ𝑖−1

𝐼 𝐹𝑖 , 𝐹𝑗

16

relevancy redundancy

New operators also improve search efficiency

• KDO: Knowledge-Driven
Optimization

• \AOS: Adaptive Operator
Selection

• \R: Random Operator Selection

• \C: Operators as Constraints

• HV: hypervolume (performance
metric in MOO, large-is-better)

• NFE: Number of function
evaluations

• Thick lines: Statistically
significantly higher median
than ε-MOEA (Wilcoxon rank-
sum, 𝑛 = 30, 𝑃 < 0.05)

17

Status and future work

• Finalizing overall architecture of TAT-C ML

• Integrating MOEA-AOS with TAT-C

• Integrating MOEA-AOS with KB

• Demonstration of TAT-C prototype with KB and eps-MOEA by August

• Develop operators for coverage problems

• Integrate an validate AOS capability with offline operators

• Integrate and validate online learning

• Validated tool by August 2019

18

